US-Raised Meat

The Unsavory Truth of the McRib and Other Fake Foods, and Why Russia Banned US-Raised Meat

Visit the Mercola Video Library
By Dr. Mercola

Over the past couple of years, we’ve learned the unsavory truth about “pink slime,” reconstituted meat, and how the use of meat glue cheats you out of your hard-earned money at the grocery store and threatens your health.

We’ve also learned that fast food fare such as McDonald’s hamburgers contain so many chemicals and so few real food ingredients that a burger fails to show signs of decomposition after more than a decade…

The famous McDonald’s McRib also came under closer scrutiny, and turned out to be something less than mouthwatering. The McRib sandwich is a non-standard item on the fast food restaurant’s menu;1 its annual return is always advertised with great fanfare — last year it even made the headlines on ABC News.2

The pork sandwich is described as a tasty fan favorite slathered in tangy barbecue sauce, slivered onions and tart pickles, served on a hoagie style bun. Sounds perfectly normal, but what’s it made of, really? In a November 2011 article, CBS Chicago news3 spilled the beans on this seasonal favorite:

“More than 70 ingredients make up the McRib and, yes, one of them is pork. But as CBS 2’s Vince Gerasole reports, there’s also an ingredient that can be found in shoes… [Registered dietician Cassie] Vanderwall gave the McRib a closer look and found the McRib has azodicarbonamide, which is used to bleach the flour in bread. It has other uses. ‘It could be on your yoga mat, in your gym shoes, in your anything that’s rubbery,’ Vanderwall said…

Then there’s the pork – which is really restructured meat product. In other words, it’s made from all the less expensive innards and castoffs from the pig… Vanderwall said the McRib ingredient list ‘reminds me of a chemistry lab.’”

To see pictures of a ‘deconstructed’ McRib sandwich, check out’s McRib page.4 It sure doesn’t look so appetizing anymore once the sauce is washed off and the meat sliced in half. In fact, it can barely pass meat, which was the point CBS news tried to make in the first place.

What is “Food” Anyway?

Two years ago, the nonprofit Physicians Committee for Responsible Medicine singled out McDonald’s in their advertisement against obesity-related deaths. As the ad claimed, obesity, diabetes, high cholesterol, hypertension and heart attacks are hallmark diseases associated with a fast food diet – a clear indication that it does not provide the appropriate nutrition for your body.

So, is McDonald’s fare really food?

When you consider the fact that a large number of the ingredients in a fast food meal exist nowhere in nature, but are rather concocted in a lab, the answer would have to be ‘no.’ Unfortunately, and to our severe detriment, ever since the advent of the so-called TV dinner back in the 1950’s, the concept of “food” has expanded from meat, vegetables, raw dairy products, fruit and other such natural items to include the highly processed, preserved, artificially flavored and often brightly colored chemical concoctions. But man simply was NOT designed to thrive on man-made chemicals.

Sadly, store-bought foods you might not recognize as processed, such as ground beef, are oftentimes no better. As reported last year, approximately 70 percent of the ground beef sold in U.S. supermarkets contains “pink slime” added in as a cheap filler.

The Pepto-Bismol-colored concoction consists of beef scraps and cow connective tissues, which has been treated with ammonium hydroxide (basically a solution of ammonia in water). It can legally make up 15 percent of any given beef product, which shaves about three cents off the cost for a pound of ground beef. The trimmings used come from parts of the cow that are most likely to be contaminated with dangerous bacteria like E. coli — which is why it must be treated with ammonia to kill off the pathogens in the first place. It’s really industrial food practices like this that pose very real threats to your health, not raw unpasteurized dairy products and other non-processed whole foods…

Russia Throws Poisonous Meat Back to U.S.

In related “questionable food” news, Russia has recently banned U.S. meat supplies after discovering it contains ractopamine — a beta agonist drug that increases protein synthesis, thereby making the animal more muscular. This reduces the fat content of the meat. As reported by Pravda,5 Russia is the fourth largest importer of US meats, purchasing about $500 million-worth of beef and pork annually.

The drug is banned for use in 160 countries, including China and Russia, but allowed in 24 countries, including Canada and the United States. According to the New York Times,6 the ban took effect as of December 7, 2012, and Russian health regulators stated that while they will initially conduct their own testing, foreign countries will soon be required to certify their meat as ractopamine-free if they want to export it to Russia. While the US Department of Agriculture (USDA) considers ractopamine safe and doesn’t test for it, Russia’s chief health inspector, Gennady Onishchenko, claims there are “serious questions” about the safety of the drug. He told the New York Times:

“For instance, use of ractopamine is accompanied by a reduction in body mass, suppression of reproductive function, increase of mastitis in dairy herds, which leads to a steep decline in the quality and safety of milk.”

Ractopamine is also known to affect the human cardiovascular system, and may cause food poisoning, according to Pravda.7 It’s also thought to be responsible for hyperactivity, muscle breakdown, and increased death and disability in livestock. While other drugs require a clearance period of around two weeks to help ensure the compounds are flushed from the meat prior to slaughter (and therefore reduce residues leftover for human consumption), there is no clearance period for ractopamine. In fact, livestock growers intentionally use the drug in the last days before slaughter in order to increase its effectiveness.

According to veterinarian Michael W. Fox, as much as 20 percent of ractopamine remains in the meat you buy from the supermarket. Despite potential health risks, the drug is used in 45 percent of U.S. pigs, 30 percent of ration-fed cattle, and an unknown percentage of turkeys.

Mexico and Brazil have announced that they will comply with Russia’s demand for ractopamine-free meats.8 The US has shown no sign of coming to an agreement, however. Instead the US has accused Russia of violating World Trade Organization (WTO) rules — an accusation Russian Deputy Prime Minister Arkady Dvorkovich has dismissed as being part of business as usual, since “all WTO members break these rules.”

How to Identify REAL Food

There are major incentives to center your diet on real foods as opposed to “food-like” products, the primary one being that real food is essential for optimal health. Real foods also taste delicious, and when bought from sustainable sources help to protect the environment. But with all the sneaky tricks being employed, how can you tell the difference? Here’s a listing of the characteristics and traits of real food versus processed “food products.”

Real Food Processed Food-Like Products
It’s grown, and sold “whole” Produced, manufactured in a factory, and sold in neat, convenient packages
Variable quality Always the same (no quality or taste variance)
Spoils fast Stays “fresh” for extended periods of time
Requires preparation No preparation required, just heat and serve
Vibrant colors and rich textures Contains fillers, additives and preservatives to make otherwise dull and bland mixtures appetizing
Authentically flavorful Artificially flavorful
Strong connection to land and culture No connection to land or culture
Shopping Guidelines for Real, Health-Promoting Food

As the U.S. agriculture industry now stands, antibiotics, pesticides, genetically engineered ingredients, hormones and countless drugs are fair game for inclusion in your food. So if you purchase your food from a typical supermarket, you’re taking the chance that your food is teeming with chemicals and drugs — even those that have been banned in other countries due to adverse health effects.

So please do your health a favor and support the small family farms in your area. You’ll receive nutritious food from a source that you can trust, and you’ll be supporting the honest work of a real family farm.

It all boils down to this: if you want to optimize your health, you must return to the basics of healthy food choices. Put your focus on WHOLE foods — foods that have not been processed or altered from their original state — food that has been grown or raised as nature intended, without the use of chemical additives, drugs, hormones, pesticides, fertilizers, and “mystery concoctions” of discarded scrap parts.

It’s really as simple as that!

And it’s not nearly as daunting a task as it may seem to find a local farmer that can supply your family with healthy, humanely raised animal products and produce. At, for instance, you can enter your zip code and find farmers’ markets, family farms, and other sources of sustainably grown food in your area, all with the click of a button. Once you make the switch from supermarket to local farmer, the choice will seem natural, and you can have peace of mind that the food you’re feeding your family is naturally wholesome. That said, regardless of where you do your grocery shopping, these are the signs of high-quality, health-promoting foods you want to look for:

It’s grown without pesticides and chemical fertilizers (organic foods fit this description, but so do some non-organic foods)
It’s not genetically modified
It contains no added growth hormones, antibiotics, or other drugs
It does not contain any artificial ingredients, including chemical preservatives
It is fresh (keep in mind that if you have to choose between wilted organic produce or fresh conventional produce, the latter may actually be the better option)
It did not come from a factory farm
It is grown with the laws of nature in mind (meaning animals are fed their native diets, not a mix of grains and animal byproducts, and have free-range access to the outdoors)
It is grown in a sustainable way (using minimal amounts of water, protecting the soil from burnout, and turning animal wastes into natural fertilizers instead of environmental pollutants)
If the food meets these criteria, it is most likely a wise choice, and would fall under the designation of “real food.” Keep in mind that reclaiming your kitchen is part and parcel of healthful living, so you know exactly what you’re putting in your body. If you need help to get started, see Colleen Huber’s helpful tips on how to eat healthier organic food on a budget. And if you’re “hooked” on fast food and other processed foods, please review my article How to Wean Yourself Off Processed Foods in 7 Steps. It’s one of the absolute most positive life changes you could make!


Vitamin K

Vitamin K
From Wikipedia, the free encyclopedia
“Vitamin K” has also been used as a slang term for ketamine, an unrelated anaesthetic.
Vitamin K
Drug class
Use Vitamin K deficiency
Biological target Gamma-glutamyl carboxylase
ATC code B02BA
External links
MeSH D014812
AHFS/ Medical Encyclopedia

Vitamin K1 (phylloquinone). Both forms of the vitamin contain a functional naphthoquinone ring and an aliphatic side-chain. Phylloquinone has a phytyl side-chain.

Vitamin K2 (menaquinone). In menaquinone, the side-chain is composed of a varying number of isoprenoid residues. The most common number of these residues is four, since animal enzymes normally produce menaquinone-4 from plant phylloquinone.

A sample of phytomenadione (vitamin K1) for injection. It is also called phylloquinone.
Vitamin K is a group of structurally similar, fat-soluble vitamins that are needed for the posttranslational modification of certain proteins required for blood coagulation and in metabolic pathways in bone and other tissue. They are 2-methyl-1,4-naphthoquinone (3-) derivatives. This group of vitamins includes two natural vitamers: vitamin K1 and vitamin K2.[1]
Vitamin K1, also known as phylloquinone, phytomenadione, or phytonadione, is synthesized by plants, and is found in highest amounts in green leafy vegetables because it is directly involved in photosynthesis. It may be thought of as the “plant form” of vitamin K. It is active in animals and may perform the classic functions of vitamin K in animals, including its activity in the production of blood clotting proteins. Animals may also convert it to vitamin K2.
Vitamin K2, the main storage form in animals, has several subtypes, which differ in isoprenoid chain length. These vitamin K2 homologs are called menaquinones, and are characterized by the number of isoprenoid residues in their side chains. Menaquinones are abbreviated MK-n, where M stands for menaquinone, the K stands for vitamin K, and the n represents the number of isoprenoid side chain residues. For example, menaquinone-4 (abbreviated MK-4) has four isoprene residues in its side chain. Menaquinone-4 (also known as menatetrenone from its four isoprene residues) is the most common type of vitamin K2 in animal products since it is normally synthesized from vitamin K1 in certain animal tissues (arterial walls, pancreas, and testes) by replacement of the phytyl tail with an unsaturated geranylgeranyl tail containing four isoprene units, thus yielding menaquinone-4. This homolog of vitamin K2 may have enzyme functions that are distinct from those of vitamin K1.
Bacteria in the colon (large intestine) can also convert K1 into vitamin K2. In addition, bacteria typically lengthen the isopreneoid side chain of vitamin K2 to produce a range of vitamin K2 forms, most notably the MK-7 to MK-11 homologs of vitamin K2. All forms of K2 other than MK-4 can only be produced by bacteria, which use these forms in anaerobic respiration. The MK-7 and other bacteria-derived form of vitamin K2 exhibit vitamin K activity in animals, but MK-7’s extra utility over menaquinone-4 (MK-4), if any, is unclear and is presently a matter of investigation.
Three synthetic types of vitamin K are known: vitamins K3, K4, and K5. Although the natural K1 and all K2 homologs have proven nontoxic, the synthetic form K3 (menadione) has shown toxicity.[2]

Contents [hide]
1 Discovery of vitamin K1
2 Conversion of vitamin K1 to vitamin K2 in animals
3 Subtypes of vitamin K2
4 Chemical structure
5 Physiology
6 Vitamin K absorption and dietary need
7 Recommended amounts
8 Anticoagulant drug interactions
9 Food sources
9.1 Vitamin K1
9.2 Vitamin K2
10 Deficiency
11 Toxicity
12 Biochemistry
12.1 Function
12.2 Gamma-carboxyglutamate proteins
12.3 Methods of assessment
12.4 Function in bacteria
13 Vitamin K injection in newborns
13.1 USA
13.2 UK
13.3 Controversy
14 Vitamin K and bone health
14.1 Vitamin K1 and bone health
14.2 Vitamin K2 (MK4) and bone health
14.3 Vitamin K2 (MK7) and bone health
15 Vitamin K and Alzheimer’s disease
16 Vitamin K used topically
17 Vitamin K and cancer
18 Vitamin K as antidote for poisoning by 4-hydroxycoumarin drugs
19 Vitamin K in rats
20 History of discovery
21 References
22 External links
[edit]Discovery of vitamin K1

Vitamin K1 (phylloquinone, phytomenadione, phytonadione) was identified in 1929 by Danish scientist Henrik Dam when he investigated the role of cholesterol by feeding chickens a cholesterol-depleted diet.[3] After several weeks, the animals developed hemorrhages and started bleeding. These defects could not be restored by adding purified cholesterol to the diet. It appeared that—together with the cholesterol—a second compound had been extracted from the food, and this compound was called the coagulation vitamin. The new vitamin received the letter K because the initial discoveries were reported in a German journal, in which it was designated as Koagulationsvitamin.
[edit]Conversion of vitamin K1 to vitamin K2 in animals

The MK-4 form of vitamin K2 is produced via conversion of vitamin K1 in the testes, pancreas and arterial walls.[4] While major questions still surround the biochemical pathway for the transformation of vitamin K1 to MK4, studies demonstrate the conversion is not dependent on gut bacteria, as it occurs in germ-free rats[5][6] and in parenterally-administered K1 in rats.[7][8] In fact, tissues that accumulate high amounts of MK4 have a remarkable capacity to convert up to 90% of the available K1 into MK4.[9][10] There is evidence that the conversion proceeds by removal of the phytyl tail of K1 to produce menadione as an intermediate, which is then condensed with an activated geranylgeranyl moiety (see also prenylation) to produce vitamin K2 in the MK-4 (menatetrione) form.[11].
[edit]Subtypes of vitamin K2

Main article: Vitamin K2
Vitamin K2 (menaquinone) includes several subtypes. The two subtypes most studied are menaquinone-4 (menatetrenone, MK4) and menaquinone-7 (MK7).
Menaquinone-7 (MK7) is different from MK4 in that it is not produced by human tissue. MK7 consumption has been shown to reduce the risk of bone fractures and cardiovascular disorders that are crucial health issues worldwide. There is a need for production of concentrated, supplementary MK7 in the diet.[citation needed] Recently, leading research teams from Australia, Japan and Korea are broadening the understandings on MK7 and its production. It has been reported that MK7 may be converted from phylloquinone (K1) in the colon by E-coli bacteria.[12] However, bacteria-derived menaquinones (MK7) appear to contribute minimally to overall vitamin K status.[13][14] MK4 and MK7 are both found in the United States in dietary supplements for bone health.
The US FDA has not approved any form of vitamin K for the prevention or treatment of osteoporosis; however, MK4 has been shown to decrease fractures up to 87%.[15] In the amount of 45 mg daily MK4 has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis.[16]
Vitamin K2 (MK4, but not MK7 or vitamin K1) has also been shown to prevent bone loss and/or fractures in the following circumstances:
caused by corticosteroids (e.g., prednisone, dexamethasone, prednisolone),[17][18][19][20]
anorexia nervosa,[21]
cirrhosis of the liver,[22]
postmenopausal osteoporosis,[16][23][24][25][26][27]
disuse from stroke,[28]
Alzheimer’s disease,[29]
Parkinson disease,[30]
primary biliary cirrhosis[31]
and leuprolide treatment (for prostate cancer).[32]
[edit]Chemical structure

All members of the vitamin K group of vitamins share a methylated naphthoquinone ring structure (menadione), and vary in the aliphatic side chain attached at the 3-position (see figure 1). Phylloquinone (also known as vitamin K1) invariably contains in its side chain four isoprenoid residues, one of which is unsaturated.
Menaquinones have side chains composed of a variable number of unsaturated isoprenoid residues; generally they are designated as MK-n, where n specifies the number of isoprenoids.[33]
It is generally accepted that the naphthoquinone is the functional group, so that the mechanism of action is similar for all K-vitamins. Substantial differences may be expected, however, with respect to intestinal absorption, transport, tissue distribution, and bio-availability. These differences are caused by the different lipophilicity of the various side chains, and by the different food matrices in which they occur.
There are three synthetic forms of vitamin K, vitamins K3, K4, and K5, which are used in many areas including the pet food industry (vitamin K3) and to inhibit fungal growth (vitamin K5).[34]

Vitamin K1, the precursor of most vitamin K in nature, is a steroisomer of phylloquinone, an important chemical in green plants, where it functions as an electron accepter in photosystem I during photosynthesis. For this reason, vitamin K1 is found in large quantities in the photosynthetic tissues of plants (green leaves, and dark green leafy vegetables such as romaine lettuce, kale and spinach), but it occurs in far smaller quantities in other plant tissues (roots, fruits, etc.). Iceberg lettuce contains relatively little. The function of phylloquinone in plants appears to have no resemblance to its later metabolic and biochemical function (as “vitamin K”) in animals, where it performs a completely different biochemical reaction.
Vitamin K (in animals) is involved in the carboxylation of certain glutamate residues in proteins to form gamma-carboxyglutamate (Gla) residues. The modified residues are often (but not always) situated within specific protein domains called Gla domains. Gla residues are usually involved in binding calcium, and are essential for the biological activity of all known Gla proteins.[35]
At this time, 15 human proteins with Gla domains have been discovered, and they play key roles in the regulation of three physiological processes:
Blood coagulation: prothrombin (factor II), factors VII, IX, and X, and proteins C, S, and Z[36]
Bone metabolism: osteocalcin, also called bone Gla protein (BGP), matrix Gla protein (MGP),[37] and periostin.[38]
Vascular biology: growth arrest-specific protein 6 (Gas6)[39]
Unknown function: proline-rich g-carboxy glutamyl proteins (PRGPs) 1 and 2, and transmembrane g-carboxy glutamyl proteins (TMGs) 3 and 4.[40]
Like other lipid-soluble vitamins (A, D, E), vitamin K is stored in the fat tissue of the human body.
[edit]Vitamin K absorption and dietary need

Previous theory held that dietary deficiency is extremely rare unless the intestine (small bowel) was heavily damaged, resulting in malabsorption of the molecule. The other at-risk group for deficiency were those subject to decreased production of K2 by normal flora, as seen in broad spectrum antibiotic use.[41] Taking broad-spectrum antibiotics can reduce vitamin K production in the gut by nearly 74% in people compared with those not taking these antibiotics.[42] Diets low in vitamin K also decrease the body’s vitamin K concentration.[43] Additionally, in the elderly there is a reduction in vitamin K2 production.[44]
Recent research results also demonstrate that the small intestine and large intestine (colon) seem to be inefficient at absorbing vitamin K.[45][46] These results are reinforced by human cohort studies, where a majority of the subjects showed inadequate vitamin K amounts in the body. This was revealed by the presence of large amounts of incomplete gamma-carboxylated proteins in the blood, an indirect test for vitamin K deficiency.[47][48][49] And in an animal model MK4 was shown to prevent arterial calcifications, pointing to its potential role in prevention of such calcification.[50] In this study vitamin K1 was also tested, in an attempt to make connections between vitamin K1 intake and calcification reduction. Only vitamin K2 (as MK4) was found to influence warfarin-induced calcification in this study.
[edit]Recommended amounts

The U.S. Dietary Reference Intake (DRI) for an Adequate Intake (AI) of vitamin K for a 25-year old male is 120 micrograms/day. The Adequate Intake (AI) for adult women is 90 micrograms/day, for infants is 10–20 micrograms/day, for children and adolescents 15–100 micrograms/day. In 2002 it was found that to get maximum carboxylation of osteocalcin, one may have to take up to 1000 μg of vitamin K1.[51]
[edit]Anticoagulant drug interactions

Phylloquinone (K1)[52][53] or menaquinone (K2) are capable of reversing the anticoagulant activity (incorrectly but colloquially referred to as “blood-thinning action”) of the powerful anticoagulant warfarin (tradename Coumadin). Warfarin works by blocking recycling of vitamin K, so that the body and tissues have lower levels of active vitamin K, and thus a deficiency of the active vitamin.
Supplemental vitamin K (for which oral dosing is often more active than injectable dosing in human adults) reverses the vitamin K deficiency caused by warfarin, and therefore modulates or totally reverses the intended anticoagulant action of warfarin and related drugs. Foods containing high amounts of vitamin K (green leafy vegetables) are avoided when taking warfarin. Sometimes small amounts of vitamin K (one milligram per day) are given orally to patients taking Coumadin so that the action of the drug is more predictable. The proper anticoagulant action of the drug is a function of vitamin K intake and drug dose, and (due to differing absorption) must be individualized for each patient. The action of warfarin and vitamin K both require two to five days after dosing to have maximum effect, and neither Coumadin or vitamin K shows much effect in the first 24 hours after they are given.
In two separate studies in the rat model, after long term administration of Coumadin to induce calcification of arteries in the rodents, supplemental vitamin K was found to reverse or prevent some of the arterial calcification attendant on the long-term blockade of vitamin K.[54] A second study found that only vitamin K2 as MK-4, and not vitamin K1 was effective at preventing warfarin-induced arterial calcification in rats, suggesting differing roles for the two forms of the vitamin in some calcium-dependent processes.[55]
The newer anticoagulant Pradaxa has a different mechanism of action that does not interact with vitamin K, and may be taken with supplemental vitamin K.[56]
[edit]Food sources

[edit]Vitamin K1
Food Serving Size Vitamin K1[57] Microgram (μg) Food Serving Size Vitamin K1[57] Microgram (μg)
Kale, cooked 1/2 cup 531 Parsley, raw 1/4 cup 246
Spinach, cooked 1/2 cup 444 Spinach, raw 1 cup 145
Collards, cooked 1/2 cup 418 Collards, raw 1 cup 184
Swiss chard, cooked 1/2 cup 287 Swiss chard, raw 1 cup 299
Mustard greens, cooked 1/2 cup 210 Mustard greens, raw 1 cup 279
Turnip greens, cooked 1/2 cup 265 Turnip greens, raw 1 cup 138
Broccoli, cooked 1 cup 220 Broccoli, raw 1 cup 89
Brussels sprouts, cooked 1 cup 219 Endive, raw 1 cup 116
Cabbage, cooked 1/2 cup 82 Green leaf lettuce 1 cup 71
Asparagus 4 spears 48 Romaine lettuce, raw 1 cup 57
Table from “Important information to know when you are taking: Warfarin (Coumadin) and Vitamin K”, Clinical Center, National Institutes of Health Drug Nutrient Interaction Task Force.[3]
Vitamin K1 is found chiefly in leafy green vegetables such as dandelion greens (which contain 778.4 μg per 100 g, or 741% of the recommended daily amount), spinach, swiss chard, and Brassica (e.g. cabbage, kale, cauliflower, broccoli, and brussels sprouts) and often the absorption is greater when accompanied by fats such as butter or oils; some fruits, such as avocado, kiwifruit and grapes, are also high in vitamin K. By way of reference, two tablespoons of parsley contain 153% of the recommended daily amount of vitamin K.[58] Some vegetable oils, notably soybean, contain vitamin K, but at levels that would require relatively large calorific consumption to meet the USDA-recommended levels.[59] Colonic bacteria synthesize a significant portion of humans’ vitamin K needs; newborns often receive a vitamin K shot at birth to tide them over until their colons become colonized at five to seven days of age from the consumption of their mother’s milk.
Phylloquinone’s tight binding to thylakoid membranes in chloroplasts makes it less bioavailable. For example, cooked spinach has a 5% bioavailability of phylloquinone, however, fat added to it increases bioavailability to 13% due to the increased solubility of vitamin K in fat.[60]
[edit]Vitamin K2
Main article: Vitamin K2
Food sources of vitamin K2 include fermented or aged cheeses, eggs, meats such as chicken and beef and their fat, livers, and organs, and in fermented vegetables, especially natto, as well as sauerkraut and kefir.[61]
Food 3 ½ ounce portion Microgram (μg) Proportion of vitamin K2 Food 3 ½ ounce portion Microgram (μg) Proportion of vitamin K2
Natto, cooked 1,103.4 (90% MK-7, 10% other MK) Chicken Leg 8.5 (100% MK-4)
Goose liver pâté 369.0 (100% MK-4) Ground beef (medium fat) 8.1 (100% MK-4)
Hard cheeses (Dutch Gouda style), raw 76.3 (6% MK-4, 94% other MK) Chicken liver (braised) 6.7 (100% MK-4)
Soft cheeses (French Brie style) 56.5 (6.5 MK-4, 93.5% other MK Hot dog 5.7 (100% MK-4)
Egg yolk, (Netherlands) 32.1 (98% MK-4, 2% other MK) Bacon 5.6 (100% MK-4)
Goose leg 31.0 (100% MK-4) Calf’s liver (pan-fried) 6.0 (100% MK-4)
Egg yolk (U.S.) 15.5 (100% MK-4) Sauerkraut 4.8 (100% MK-4)
Butter 15.0 (100% MK-4) Whole milk 1.0 (100% MK-4)
Chicken liver (raw) 14.1 (100% MK-4) Salmon (Alaska, Coho, Sockeye, Chum, and King wild (raw)) 0.5 (100% MK-4)
Chicken liver (pan-fried) 12.6 (100% MK-4) Cow’s liver (pan-fried) 0.4 (100% MK-4)
Cheddar cheese (U.S.) 10.2 (6% MK-4, 94% other MK) Egg white 0.4 (100% MK-4)
Meat franks 9.8 (100% MK-4) Skim milk 0.0
Chicken breast 8.9 (100% MK-4)
Table from “Rhéaume-Bleue, Kate. “Vitamin K2 and the Calcium Paradox” John Wiley & Sons Canada, Ltd., 2012, p. 66-67.
Vitamin K2 (menaquinone-4) is synthesized by animal tissues and is found in meat, eggs, and dairy products.[62] Menaquinone-7 is synthesized by bacteria during fermentation and is found in fermented soybeans (natto).[63] In natto, none of the vitamin K is from menaquinone-4, and in cheese only 2–7% is.[64]

Main article: Vitamin K deficiency
Average diets are usually not lacking in vitamin K, and primary deficiency is rare in healthy adults. Newborn infants are at an increased risk of deficiency. Other populations with an increased prevalence of vitamin K deficiency include those who suffer from liver damage or disease (e.g. alcoholics), cystic fibrosis, or inflammatory bowel diseases, or have recently had abdominal surgeries. Secondary vitamin K deficiency can occur in bulimics, those on stringent diets, and those taking anticoagulants. Other drugs associated with vitamin K deficiency include salicylates, barbiturates, and cefamandole, although the mechanisms are still unknown. Vitamin K1 deficiency can result in coagulopathy, a bleeding disorder.[64] Symptoms of K1 deficiency include anemia, bruising, and bleeding of the gums or nose in both sexes, and heavy menstrual bleeding in women.
Osteoporosis[65][66] and coronary heart disease[67][68] are strongly associated with lower levels of K2 (menaquinone). Vitamin K2 (MK-7) deficiency is also related to severe aortic calcification and all-cause mortality.[69] Menaquinone is not inhibited by salicylates as happens with K1, so menaquinone supplementation can alleviate the chronic vitamin K deficiency caused by long-term aspirin use.[citation needed]

Although allergic reaction from supplementation is possible, no known toxicity is associated with high doses of the phylloquinone (vitamin K1) or menaquinone (vitamin K2) forms of vitamin K, so no tolerable upper intake level (UL) has been set.[70]
Blood clotting (coagulation) studies in humans using 45 mg per day of vitamin K2 (as MK4)[27] and even up to 135 mg/day (45 mg three times daily) of K2 (as MK4),[71] showed no increase in blood clot risk. Even doses in rats as high as 250 mg/kg body weight did not alter the tendency for blood-clot formation to occur.[72]
Unlike the safe natural forms of vitamin K1 and vitamin K2 and their various isomers, a synthetic form of vitamin K, vitamin K3 (menadione), is demonstrably toxic. The FDA has banned this form from over-the-counter sale in the United States because large doses have been shown to cause allergic reactions, hemolytic anemia, and cytotoxicity in liver cells.[2]

The function of vitamin K1 in the cell is to add a carboxylic acid functional group to a glutamate amino acid residue in a proteins, to form a gamma-carboxyglutamate (Gla) residue. This is a somewhat uncommon post translational modification of the protein, which is then known as a “Gla protein.” The presense of two -COOH (carboxylate) groups on the same carbon in the gamma-carboxyglutamate residue allows it to chelate calcium ion. The binding of calcium ion in this way very often triggers the function or binding of Gla-protein enzymes, such as the so-called vitamin K dependent clotting factors discussed below.
Within the cell, vitamin K undergoes electron reduction to a reduced form called vitamin K hydroquinone by the enzyme vitamin K epoxide reductase (VKOR).[73] Another enzyme then oxidizes vitamin K hydroquinone to allow carboxylation of Glu to Gla; this enzyme is called the gamma-glutamyl carboxylase[74][75] or the vitamin K-dependent carboxylase. The carboxylation reaction will proceed only if the carboxylase enzyme is able to oxidize vitamin K hydroquinone to vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled. Vitamin K epoxide is then reconverted to vitamin K by VKOR. The reduction and subsequent reoxidation of vitamin K coupled with carboxylation of Glu is called the vitamin K cycle.[76] Humans are rarely deficient in vitamin K1 because, in part, vitamin K 1 is continuously recycled in cells.[77]
Warfarin and other 4-hydroxycoumarins block the action of the VKOR.[78] This results in decreased concentrations of vitamin K and vitamin K hydroquinone in the tissues, such that the carboxylation reaction catalyzed by the glutamyl carboxylase is inefficient. This results in the production of clotting factors with inadequate Gla. Without Gla on the amino termini of these factors, they no longer bind stably to the blood vessel endothelium and cannot activate clotting to allow formation of a clot during tissue injury. As it is impossible to predict what dose of warfarin will give the desired degree of suppression of the clotting, warfarin treatment must be carefully monitored to avoid overdosing.
[edit]Gamma-carboxyglutamate proteins
At present, the following human Gla-containing proteins have been characterized to the level of primary structure: the blood coagulation factors II (prothrombin), VII, IX, and X, the anticoagulant proteins C and S, and the factor X-targeting protein Z. The bone Gla protein osteocalcin, the calcification-inhibiting matrix Gla protein (MGP), the cell growth regulating growth arrest specific gene 6 protein (Gas6), and the four transmembrane Gla proteins (TMGPs), the function of which is at present unknown. Gas6 can function as a growth factor to activate the Axl receptor tyrosine kinase and stimulate cell proliferation or prevent apoptosis in some cells. In all cases in which their function was known, the presence of the Gla residues in these proteins turned out to be essential for functional activity.
Gla proteins are known to occur in a wide variety of vertebrates: mammals, birds, reptiles, and fish. The venom of a number of Australian snakes acts by activating the human blood-clotting system. In some cases, activation is accomplished by snake Gla-containing enzymes that bind to the endothelium of human blood vessels and catalyze the conversion of procoagulant clotting factors into activated ones, leading to unwanted and potentially deadly clotting.
Another interesting class of invertebrate Gla-containing proteins is synthesized by the fish-hunting snail Conus geographus.[79] These snails produce a venom containing hundreds of neuroactive peptides, or conotoxins, which is sufficiently toxic to kill an adult human. Several of the conotoxins contain two to five Gla residues.[80]
[edit]Methods of assessment
Vitamin K status can be assessed by:
The prothrombin time (PT) test measures the time required for blood to clot. A blood sample is mixed with citric acid and put in a fibrometer; delayed clot formation indicates a deficiency. This test is insensitive to mild deficiency, as the values do not change until the concentration of prothrombin in the blood has declined by at least 50%.[81]
Undercarboxylated prothrombin (PIVKA-II), in a study of 53 newborns, found “PT (prothrombin time) is a less sensitive marker than PIVKA II”,[82] and as indicated above, PT is unable to detect subclinical deficiencies that can be detected with PIVKA-II testing.
Plasma phylloquinone was found to be positively correlated with phylloquinone intake in elderly British women, but not men,[83]
but an article by Schurges et al. reported no correlation between FFQ and plasma phylloquinone.[84]
Urinary γ-carboxyglutamic acid responds to changes in dietary vitamin K intake. Several days are required before any change can be observed. In a study by Booth et al., increases of phylloquinone intakes from 100 μg to between 377 and 417 μg for five days did not induce a significant change. Response may be age-specific.[85]
Undercarboxylated osteocalcin (UcOc) levels have been inversely correlated with stores of vitamin K[86] and bone strength in developing rat tibiae. Another study following 78 postmenopausal Korean women found a supplement regimen of vitamins K and D, and calcium, but not a regimen of vitamin D and calcium, was inversely correlated with reduced UcOc levels.[87]
[edit]Function in bacteria
Many bacteria, such as Escherichia coli found in the large intestine, can synthesize vitamin K2 (menaquinone-7),[88] but not vitamin K1 (phylloquinone). In these bacteria, menaquinone will transfer two electrons between two different small molecules, in a process called anaerobic respiration.[89] For example, a small molecule with an excess of electrons (also called an electron donor) such as lactate, formate, or NADH, with the help of an enzyme, will pass two electrons to a menaquinone. The menaquinone, with the help of another enzyme, will in turn transfer these two electrons to a suitable oxidant, such fumarate or nitrate (also called an electron acceptor). Adding two electrons to fumarate or nitrate will convert the molecule to succinate or nitrite + water, respectively. Some of these reactions generate a cellular energy source, ATP, in a manner similar to eukaryotic cell aerobic respiration, except the final electron acceptor is not molecular oxygen, but fumarate or nitrate. In aerobic respiration, the final oxidant is molecular oxygen (O2), which accepts four electrons from an electron donor such as NADH to be converted to water. E. coli can carry out aerobic respiration and menaquinone-mediated anaerobic respiration.
[edit]Vitamin K injection in newborns

The blood clotting factors of newborn babies are roughly 30 to 60% that of adult values; this may be due to the reduced synthesis of precursor proteins and the sterility of their guts. Human milk contains 1-4 μg/l of vitamin K1, while formula-derived milk can contain up to 100 μg/l in supplemented formulas. Vitamin K2 concentrations in human milk appear to be much lower than those of vitamin K1. Occurrence of vitamin K deficiency bleeding in the first week of the infant’s life is estimated at 0.25 to 1.7%, with a prevalence of two to 10 cases per 100,000 births.[90] Premature babies have even lower levels of the vitamin, so they are at a higher risk from this deficiency.
Bleeding in infants due to vitamin K deficiency can be severe, leading to hospitalizations, blood transfusions, brain damage, and death. Supplementation can prevent most cases of vitamin K deficiency bleeding in the newborn. Intramuscular administration is more effective in preventing late vitamin K deficiency bleeding than oral administration.[91][92]
As a result of the occurrences of vitamin K deficiency bleeding, the Committee on Nutrition of the American Academy of Pediatrics has recommended 0.5 to 1.0 mg vitamin K1 be administered to all newborns shortly after birth.[92]

This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2011)
In the UK, vitamin K is administered to newborns as either a single injection at birth or three orally administered doses given at birth and then over the baby’s first month.
Controversy arose in the early 1990s regarding this practice, when two studies suggested a relationship between parenteral administration of vitamin K and childhood cancer,[citation needed] however, poor methods and small sample sizes led to the discrediting of these studies, and a review of the evidence published in 2000 by Ross and Davies found no link between the two.[93][verification needed]
[edit]Vitamin K and bone health

Both physiological and observational evidence indicate vitamin K plays a role in bone growth and the maintenance of bone density, but efforts to delay the onset of osteoporosis by vitamin K supplementation have proven ineffective.
Vitamin K takes part in the post-translational modification as a cofactor in γ-carboxylation of vitamin K-dependant proteins (VKDPs). VKDPs have glutamate residues (Glu). Biophysical studies have suggested supplemental vitamin K promotes osteotrophic processes and slows osteoclastic processes via calcium bonding. Study of Atkins et al.[94] revealed phylloquinone, menatetrenone (MK4) and menadione promote in vitro mineralisaton by human primary osteoblasts. Other studies have shown vitamin K antagonists (usually a class of anticoagulants) lead to early calcification of the epiphysis and epiphysial line in mice and other animals, causing seriously decreased bone growth, due to defects in osteocalcin and matrix Gla protein. Their primary function is to prevent overcalcification of the bone and cartilage. Vitamin K is important in the process of carboxylating glutamic acid (Glu) in these proteins to gamma-carboxyglutamic acid (Gla), which is necessary for their function.[95][96] Vitamin D is reported to regulate the OC transcription by osteoblast thereby showing that vitamin K and vitamin D work in tandem for the bone metabolism and development. Lian and his group discovered two nucleotide substitution regions they named “osteocalcin box” in the rat and human osteocalcin genes.[97] They found a region 600 nucleotides immediately upstream from the transcription start site that support a 10-fold stimulated transcription of the gene by 1,25-dihydroxy vitamin D.
[edit]Vitamin K1 and bone health
Data from the 1998 Nurses Health Study, an observational study, indicated an inverse relationship between dietary vitamin K1 and the risk of hip fracture. After being given 110 micrograms/day of vitamin K, women who consumed lettuce one or more times per day had a significantly lower risk of hip fracture than women who consumed lettuce one or fewer times per week. In addition to this, high intakes of vitamin D but low intakes of vitamin K were suggested to pose an increased risk of hip fracture.[96][98] The Framingham Heart Study[99] is another study that showed a similar result. Subjects in the highest quartile of vitamin K1 intake (median K1 intake of 254 μg/ day) had a 35% lower risk of hip fracture than those in the lowest quartile. 254 μg/day is above the US Daily Reference Intake (DRI) of 90 μg/day for women and 120 μg/day for men. (See above)
In the face of this evidence, a large multicentre, randomized, placebo-controlled trial was performed to test the supplementation of vitamin K in postmenopausal women with osteopenia. Despite heavy doses of vitamin K1, no differences were found in bone density between the supplemented and placebo groups.[100]
[edit]Vitamin K2 (MK4) and bone health
MK4 has been shown in numerous studies to reduce fracture risk, and stop and reverse bone loss. In Japan, MK4 in the dose of 45 mg daily is recognized as a treatment for osteoporosis[98][101] under the trade name Glakay.[102] MK4 has been shown to decrease fractures up to 87%.[15] In the amount of 45 mg daily MK4 has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis.[16]
MK4 (but not MK7 or vitamin K1) prevented bone loss and/or fractures in the following circumstances:
caused by corticosteroids (e.g., prednisone, dexamethasone, prednisolone)[17][18][19][20]
anorexia nervosa[21]
cirrhosis of the liver[22]
postmenopausal osteoporosis[16][23][24][25][26][27]
disuse from stroke[28]
Alzheimer’s disease[29]
Parkinson disease[30]
primary biliary cirrhosis[31]
leuprolide treatment (for prostate cancer).[32]
[edit]Vitamin K2 (MK7) and bone health
Menaquinone-7 (MK7), which is abundant in fermented soybeans (natto), has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption.[103] In another study, use of MK-7 caused significant elevations of serum Y-carboxylated osteocalcin concentration, a biomarker of bone formation. MK-7 also completely inhibited a decrease in the calcium content of bone tissue by inhibiting the bone-resorbing factors parathyroid hormone and prostaglandin E2.[104] On 19 February 2011, HSA (Singapore) approved a health supplement that contains vitamin K2 (MK7) and vitamin D3 for increasing bone mineral density.[105]
[edit]Vitamin K and Alzheimer’s disease

Research into the antioxidant properties of vitamin K indicates that the concentration of vitamin K is lower in the circulation of carriers of the APOE4 gene, and recent studies have shown its ability to inhibit nerve cell death due to oxidative stress. It has been hypothesized that vitamin K may reduce neuronal damage and that supplementation may hold benefits to treating Alzheimer’s disease, although more research is necessary in this area.[106]
[edit]Vitamin K used topically

Vitamin K may be applied topically, typically as a 5% cream, to diminish postoperative bruising from cosmetic surgery and injections, to treat broken capillaries (spider veins), to treat rosacea, and to aid in the fading of hyperpigmentation and dark under-eye circles.[107][108]
[edit]Vitamin K and cancer

While researchers in Japan were studying the role of vitamin K2 as the menaquinone-4 (MK-4) form in the prevention of bone loss in females with liver disease, they discovered another possible effect. This two-year study that involved 21 women with viral liver cirrhosis found that women in the supplement group were 90% less likely to develop liver cancer.[109][110] A German study performed on men with prostate cancer found a significant inverse relationship between vitamin K2 consumption and advanced prostate cancer.[111]
In 2006, a clinical trial showed that K2 as the menaquinone-4 (MK-4) (called menatetrenone in the study) might be able to reduce recurrence of liver cancer after surgery. It should be noted that this was a small pilot study and other similar studies did not show much effect. MK4 is now being tested along with other drugs to reduce liver cancer and has shown promising early results.[112]
[edit]Vitamin K as antidote for poisoning by 4-hydroxycoumarin drugs

Vitamin K is an antidote for poisoning by 4-hydroxycoumarin anticoagulant drugs (sometimes loosely referred to as coumarins). These include the pharmaceutical warfarin, and also anticoagulant-mechanism poisons such as bromadiolone, which are commonly found in rodenticides. 4-Hydroxycoumarin drugs possess anticoagulatory and rodenticidal properties because they inhibit recycling of vitamin K and thus cause simple deficiency of active vitamin K. This deficiency results in decreased vitamin K-dependent synthesis of some clotting factors by the liver. Death is usually a result of internal hemorrhage. Treatment for rodenticide poisoning usually consists of repeated intravenous doses of vitamin K, followed by doses in pill form for a period of at least two weeks, though possibly up to 2 months, after poisoning (this is necessary for the more potent 4-hydoxycoumarins used as rodenticides, which act by being fat-soluble and thus having a longer residence time in the body). If caught early, prognosis is good even when great amounts of the drug or poison are ingested, as these drugs are not true vitamin K antagonists, so the same amount of fresh vitamin K administered each day is sufficient for any dose of poison (although as noted, this must be continued for a longer time with more potent poisons). No matter how large the dose of these agents, they can do no more than prevent vitamin K from being recycled, and this metabolic problem may always be simply reversed by giving sufficient vitamin K (often 5 mg per day) to ensure that enough fresh vitamin K resides in the tissues to carry out its normal functions, even when efficient use of it by the body is prevented by the poison.
[edit]Vitamin K in rats

A recent study has shown that rats who are fed excess amounts of vitamin K had greater amounts of brain sulfatide concentrations.[113] This study indicates that vitamin K has more uses than originally thought, thus furthering the importance of daily vitamin K intake. The same study showed that a diet with insufficient vitamin K levels decreased the brain sulfatide concentrations in rats at the (p < . 01) significance level. Another study involving rats has indicated that different species, strains and genders of rats required different amounts of vitamin K intake, depending on how much was stored in their livers.[114] This may indicate that different humans should have different needs for their vitamin K intake. A third study looked at the way rats and chicks are able to recycle parts of vitamin K. The study found that chicks are about 10% less efficient in recycling the vitamin K than their rat counterparts.[115] This evidences also helps to confirm that vitamin K levels are unique to each species, and the previous study shows that required vitamin K intake also varies within species.
[edit]History of discovery

In 1929, Danish scientist Henrik Dam investigated the role of cholesterol by feeding chickens a cholesterol-depleted diet.[3] After several weeks, the animals developed hemorrhages and started bleeding. These defects could not be restored by adding purified cholesterol to the diet. It appeared that—together with the cholesterol—a second compound had been extracted from the food, and this compound was called the coagulation vitamin. The new vitamin received the letter K because the initial discoveries were reported in a German journal, in which it was designated as Koagulationsvitamin. Edward Adelbert Doisy of Saint Louis University did much of the research that led to the discovery of the structure and chemical nature of vitamin K.[116] Dam and Doisy shared the 1943 Nobel Prize for medicine for their work on vitamin K (K1 and K2) published in 1939. Several laboratories synthesized the compound(s) in 1939.[117]
For several decades, the vitamin K-deficient chick model was the only method of quantifying vitamin K in various foods: the chicks were made vitamin K-deficient and subsequently fed with known amounts of vitamin K-containing food. The extent to which blood coagulation was restored by the diet was taken as a measure for its vitamin K content. Three groups of physicians independently found this: Biochemical Institute, University of Copenhagen (Dam and Johannes Glavind), University of Iowa Department of Pathology (Emory Warner, Kenneth Brinkhous, and Harry Pratt Smith), and the Mayo Clinic (Hugh Butt, Albert Snell, and Arnold Osterberg).[118]
The first published report of successful treatment with vitamin K of life-threatening hemorrhage in a jaundiced patient with prothrombin deficiency was made in 1938 by Smith, Warner, and Brinkhous.[119]
The precise function of vitamin K was not discovered until 1974, when three laboratories (Stenflo et al.,[120] Nelsestuen et al.,[121] and Magnusson et al.[122]) isolated the vitamin K-dependent coagulation factor prothrombin (Factor II) from cows that received a high dose of a vitamin K antagonist, warfarin. It was shown that, while warfarin-treated cows had a form of prothrombin that contained 10 glutamate amino acid residues near the amino terminus of this protein, the normal (untreated) cows contained 10 unusual residues that were chemically identified as gamma-carboxyglutamate, or Gla. The extra carboxyl group in Gla made clear that vitamin K plays a role in a carboxylation reaction during which Glu is converted into Gla.
The biochemistry of how vitamin K is used to convert Glu to Gla has been elucidated over the past thirty years in academic laboratories throughout the world.